Mandalika's scratchpad [ Work blog @Oracle | Stock Market Notes | My Music Compositions ]

Old Posts: 09.04  10.04  11.04  12.04  01.05  02.05  03.05  04.05  05.05  06.05  07.05  08.05  09.05  10.05  11.05  12.05  01.06  02.06  03.06  04.06  05.06  06.06  07.06  08.06  09.06  10.06  11.06  12.06  01.07  02.07  03.07  04.07  05.07  06.07  08.07  09.07  10.07  11.07  12.07  01.08  02.08  03.08  04.08  05.08  06.08  07.08  08.08  09.08  10.08  11.08  12.08  01.09  02.09  03.09  04.09  05.09  06.09  07.09  08.09  09.09  10.09  11.09  12.09  01.10  02.10  03.10  04.10  05.10  06.10  07.10  08.10  09.10  10.10  11.10  12.10  01.11  02.11  03.11  04.11  05.11  07.11  08.11  09.11  10.11  11.11  12.11  01.12  02.12  03.12  04.12  05.12  06.12  07.12  08.12  09.12  10.12  11.12  12.12  01.13  02.13  03.13  04.13  05.13  06.13  07.13  08.13  09.13  10.13  11.13  12.13  01.14  02.14  03.14  04.14  05.14  06.14  07.14  09.14  10.14  11.14  12.14  01.15  02.15  03.15  04.15  06.15  09.15  12.15  01.16  03.16  04.16  05.16  06.16  07.16  08.16  09.16  12.16  01.17  02.17  03.17  04.17  06.17  07.17  08.17  09.17 


Friday, January 07, 2005
 
2s complement

In general, we (human beings) express negative numbers by placing a minus (-) sign at the left end of the number. Similarly while representing the integers in binary format, we can leave the left-most bit be the sign bit. If the left-most bit is a zero, the integer is positive; if it is a one, it is negative. To make it easy to design computers which do integer arithmetic, integers should obey the following rules:

(1) Zero is positive and -0 = 0
(2) The top-most bit should tell us the sign of the integer.
(3) The negative of a negative integer is the original integer ie., --55 is 55.
(4) x - y should give the same result as x + -y. That is, 8 - 3 should give us the same result as 8 + -3.
(5) Negative and positive numbers shouldn't be treated in different ways when we do multiplication and division with them.

A simple and elegant way to represent integers which obeys these rules is called 2s complement. The 2s complement of an integer is calculated by changing all bits of integer from 1 to 0 & 0 to 1, then adding 1 to the result.

eg., The 2s complement of -55 is 1100 1001

0011 0111 <- binary representation of 55 (8-bit)
1100 1000 <- the 1s complement; change 1's to 0's and 0's to 1's
+1
---------
1100 1001 <- the 2s complement (-55)
---------
Now lets calculate --55 ie., 55

1100 1001 <- binary representation of -55 (8-bit)
0011 0110 <- 1s complement of 55
+1
---------
0011 0111 = 55
---------
Above example verifies rule (3); similarly we can verify rest of the rules


Comments:
why the method of representing negative number in computer is called 2s complement?
 
Post a Comment

Links to this post:

Create a Link



<< Home


2004-2017 

This page is powered by Blogger. Isn't yours?